Skip to content

LatticeDB: Deterministic Storage for Time-Travel Simulations

LatticeDB: Deterministic Storage for Time-Travel Simulations

Version: 1.0.0 Status: In Development Last Updated: 2026-01-10


Overview

LatticeDB is Orix’s deterministic storage system built for time-travel simulations. It provides tick-aware storage, built-in Chronicle time-travel, CRDT support, and deterministic query ordering—features that traditional databases lack.


The Problem

Traditional databases don’t understand simulation time. LatticeDB was built to solve specific problems that arise when you need deterministic, time-aware storage for simulations:

1. No Simulation Time Awareness

  • PostgreSQL, MongoDB, and others track wall-clock time (DateTime.Now)
  • They don’t understand ticks - discrete simulation time units
  • Querying “what was the state at tick 5000?” requires custom temporal extensions
  • Time-travel queries are bolted on, not built in

2. No Built-In Time-Travel

  • Historical state requires custom versioning tables
  • Reconstructing past states means replaying change logs
  • Branching timelines (“what if” scenarios) requires application-level complexity
  • No native snapshot/restore primitives

3. CRDT Support Missing

  • Conflict-free data types (counters, sets, maps) require custom layers
  • Multi-master replication needs manual conflict resolution
  • No guarantees about merge convergence

4. Non-Deterministic Query Ordering

  • Dictionary<K,V> iteration order varies between runs
  • HashSet<T> enumeration is non-deterministic
  • Index scan order can differ based on implementation details
  • This breaks simulation determinism

5. Schema Enforcement Gaps

  • MongoDB allows arbitrary document shapes
  • PostgreSQL requires migrations for schema changes
  • No compile-time guarantee that code matches database schema

How Lattice Solves It

Core Principles

  1. Tick-Aware by Default - Every query understands simulation time
  2. Chronicle Built-In - Time-travel is a first-class feature, not an extension
  3. Deterministic Ordering - Query results are stable across runs
  4. Schema Authority - Axion schemas define storage structures
  5. CRDT Native - Conflict-free data types for distributed consistency

Technical Approach

Tick-Aware Storage

// Storage engine tracks tick metadata
public interface IStorageEngine
{
void Put(ReadOnlySpan<byte> key, ReadOnlySpan<byte> value);
bool TryGet(ReadOnlySpan<byte> key, out byte[] value);
IEnumerable<KeyValuePair<byte[], byte[]>> Scan(ReadOnlySpan<byte> prefix);
}
// Chronicle wraps storage with temporal versioning
public sealed class ChronicleEngine
{
Snapshot CreateSnapshot(ulong tick, byte[] stateData, ulong stateHash);
TravelResult TravelTo(ulong targetTick);
BranchResult Branch(ulong snapshotId, BranchOptions options);
}

Deterministic Collections

All Lattice storage operations return results in sorted order:

  • Keys are ordered lexicographically
  • Scan operations return deterministic sequences
  • CRDT merge operations preserve commutativity

Schema-Driven Types

schemas/lattice/storage.axion
// Axion schema defines structure
entity Transaction {
@key id: uuid;
state: TransactionState;
start_tick: int64;
commit_tick: int64?;
}
// Generated code implements storage interface
// ILatticeEntity<T> for ORM integration
public interface ILatticeEntity<TSelf> where TSelf : struct, ILatticeEntity<TSelf>
{
uint Id { get; set; }
void Serialize(ref BitWriter writer);
static abstract TSelf Deserialize(ref BitReader reader);
}

What Lattice Provides

Architecture Overview

┌─────────────────────────────────────────────────────────┐
│ Application Layer │
├─────────────────────────────────────────────────────────┤
│ Lattice.ORM │ Lattice.QL │ Lattice.Client │
│ (Active Record) │ (Query Language) │ (Network API) │
├─────────────────────────────────────────────────────────┤
│ Lattice.Chronicle (Time-Travel Layer) │
│ - Snapshots - Branching - Version Tracking │
├─────────────────────────────────────────────────────────┤
│ Lattice.DB (Storage Engine Layer) │
│ - Memory - File - Binary Pages │
├─────────────────────────────────────────────────────────┤
│ Lattice.CRDT (Conflict-Free Data Types) │
│ - Counters - Sets - Maps │
├─────────────────────────────────────────────────────────┤
│ Lattice.Replication (Multi-Node Sync Layer) │
│ - Sync Protocol - Conflict Resolution - Delta Logs │
└─────────────────────────────────────────────────────────┘

Component Status

ComponentStatusDescription
Lattice.DB✅ ImplementedCore key-value storage engine
Lattice.Chronicle✅ ImplementedTime-travel snapshots and branching
Lattice.ORM🚧 In ProgressObject-relational mapping layer
Lattice.QL🚧 In ProgressQuery language parser (GraphQL-like)
Lattice.CRDT✅ ImplementedGCounter, PNCounter, OR-Set, G-Set, 2P-Set
Lattice.Search📋 PlannedFull-text search indexing
Lattice.Replication🚧 In ProgressMulti-node synchronization
Lattice.Server🚧 In ProgressHTTP/gRPC/WebSocket transports
Lattice.Client🚧 In ProgressClient library for remote access
Lattice.Crypto🚧 In ProgressCapability-based access control
Lattice.Optimization🚧 In ProgressQuery planner and batch executor

Lattice.DB: Core Storage

Storage Engines

LatticeDB supports multiple backend engines:

public enum StorageEngine
{
Lmdb = 0, // Lightning Memory-Mapped Database (default)
Sqlite = 1, // SQLite for compatibility
RocksDb = 2, // RocksDB for high-throughput
Memory = 3 // In-memory for testing
}

Key-Value Operations

// Open storage
var engine = new MemoryStorageEngine();
engine.Open(":memory:");
// Store data
engine.Put("user:123"u8, userData);
// Retrieve data
if (engine.TryGet("user:123"u8, out var data))
{
// Process data
}
// Range scan (deterministic order)
foreach (var kvp in engine.Scan("user:"u8))
{
Console.WriteLine($"Key: {Encoding.UTF8.GetString(kvp.Key)}");
}
// Count keys with prefix
int userCount = engine.Count("user:"u8);
// Delete range
int deleted = engine.DeleteRange("user:"u8);

Transaction Support

// Use transactional storage for atomic operations
if (engine is ITransactionalStorage txStorage)
{
using var tx = txStorage.BeginTransaction();
try
{
tx.Put("balance:123"u8, newBalance);
tx.Put("history:123:5000"u8, historyEntry);
tx.Commit();
}
catch
{
tx.Rollback();
throw;
}
}

Configuration

config StorageConfig {
engine: StorageEngine = Lmdb;
max_size_bytes: int64 = 0; // 0 = unlimited
page_size: int32 = 4096; // 4KB pages
mmap: bool = true; // Memory-mapped I/O
sync_mode: SyncMode = Normal; // Write synchronization
wal_enabled: bool = true; // Write-ahead logging
}

Lattice.Chronicle: Time-Travel Engine

Chronicle enables snapshot-based time travel and timeline branching.

Creating Snapshots

var chronicle = new ChronicleEngine(storageEngine);
chronicle.EnsureMainTimeline();
// Capture state at current tick
var snapshot = chronicle.CreateSnapshot(
tick: 5000,
stateData: SerializeGameState(),
stateHash: ComputeStateHash(),
options: new SnapshotOptions
{
Label = "Before boss fight",
Compress = true
}
);
Console.WriteLine($"Snapshot {snapshot.Id} at tick {snapshot.Tick}");
Console.WriteLine($"Size: {snapshot.Data.Length} bytes (compressed from {snapshot.UncompressedSize})");

Time-Travel Queries

// Travel to a specific tick
var result = chronicle.TravelTo(targetTick: 3500);
if (result.Success)
{
Console.WriteLine($"Found snapshot at tick {result.Snapshot.Tick}");
Console.WriteLine($"Need to replay {result.TicksReplayed} ticks");
Console.WriteLine($"Retrieved in {result.ElapsedMicroseconds} µs");
// Restore state
RestoreGameState(result.StateData);
}

Timeline Branching

// Branch from a snapshot to explore alternate outcomes
var branchResult = chronicle.Branch(
snapshotId: snapshot.Id,
options: new BranchOptions
{
Name = "What if player chose door B?",
Description = "Alternate timeline where player made different choice",
SwitchToNewTimeline = true
}
);
if (branchResult.Success)
{
Console.WriteLine($"Created timeline {branchResult.Timeline.Id}");
Console.WriteLine($"Branched from tick {branchResult.BranchPoint.Tick}");
// Continue simulation in alternate timeline
// Original timeline remains unchanged
}

Timeline Management

// List all timelines
foreach (var timeline in chronicle.Timelines)
{
Console.WriteLine($"Timeline {timeline.Id}: {timeline.Name}");
Console.WriteLine($" Created at tick: {timeline.CreatedAtTick}");
Console.WriteLine($" Current tick: {timeline.CurrentTick}");
Console.WriteLine($" Active: {timeline.IsActive}");
}
// Switch between timelines
chronicle.SwitchTimeline(timelineId: 2);
// Compare states across timelines
var comparison = chronicle.Compare(
timelineA: 1,
timelineB: 2,
tick: 5000
);
Console.WriteLine($"Timeline 1 hash: {comparison.StateHashA:X16}");
Console.WriteLine($"Timeline 2 hash: {comparison.StateHashB:X16}");
Console.WriteLine($"Diverged: {comparison.StateHashA != comparison.StateHashB}");

Snapshot Verification

// Verify snapshot integrity
bool valid = chronicle.VerifySnapshot(
snapshotId: snapshot.Id,
hashFunction: data => ComputeStateHash(data)
);
if (!valid)
{
Console.WriteLine("WARNING: Snapshot integrity check failed!");
}

Chronicle Statistics

var stats = chronicle.GetStats();
Console.WriteLine($"Timelines: {stats.TimelineCount}");
Console.WriteLine($"Snapshots: {stats.SnapshotCount}");
Console.WriteLine($"Total data: {stats.TotalDataBytes / 1024} KB");
Console.WriteLine($"Uncompressed: {stats.TotalUncompressedBytes / 1024} KB");
Console.WriteLine($"Compression ratio: {stats.CompressionRatio:P1}");

Lattice.QL: Query Language

Lattice Query Language (LatticeQL) is a GraphQL-inspired language with temporal extensions.

Query Syntax

# Basic query
query GetPlayer {
player(id: "123") {
name
score
level
}
}
# Time-travel query
query GetPlayerHistory {
player(id: "123") @at(tick: 5000) {
name
score
}
}
# Range query
query HighScorers {
players(where: { score_gt: 1000 }, orderBy: score_DESC) {
name
score
}
}
# Temporal range
query PlayerScoreHistory {
player(id: "123") @between(start: 1000, end: 5000) {
tick
score
}
}

Query Execution (In Progress)

var parser = QueryParser.Parse(@"
query GetPlayer {
player(id: ""123"") {
name
score
}
}
");
if (!parser.HasErrors)
{
var document = parser.Document;
// Execute query (executor not yet implemented)
}

Lattice.CRDT: Conflict-Free Data Types

CRDTs enable distributed state that converges without coordination.

Counters

GCounter (Grow-Only Counter)

// Create counter for this node
var counter = new GCounter(nodeId: "node-1");
// Increment locally
counter.Increment(10);
counter.Increment(5);
Console.WriteLine($"Value: {counter.Value}"); // 15
// Merge from another node
var otherCounter = new GCounter(nodeId: "node-2");
otherCounter.Increment(20);
counter.Merge(otherCounter);
Console.WriteLine($"Merged value: {counter.Value}"); // 35
// Serialize for network transmission
byte[] bytes = counter.ToBytes();
var restored = GCounter.FromBytes(bytes, "node-1");

PNCounter (Positive-Negative Counter)

// Counter that supports both increment and decrement
var counter = new PnCounter(nodeId: "node-1");
counter.Increment(100);
counter.Decrement(30);
Console.WriteLine($"Value: {counter.Value}"); // 70
Console.WriteLine($"Total increments: {counter.TotalIncrements}"); // 100
Console.WriteLine($"Total decrements: {counter.TotalDecrements}"); // 30
// Merge from another node
var other = new PnCounter(nodeId: "node-2");
other.Increment(50);
counter.Merge(other);
Console.WriteLine($"Merged: {counter.Value}"); // 120

BoundedCounter (Lower-Bounded Counter)

// Counter that cannot go below zero (useful for inventory)
var inventory = new BoundedCounter(nodeId: "node-1", lowerBound: 0);
inventory.Increment(100);
// Try to decrement
if (inventory.TryDecrement(30))
{
Console.WriteLine("Decremented successfully");
}
// This would fail (returns false)
bool success = inventory.TryDecrement(200);

Sets

GSet (Grow-Only Set)

// Set that only supports additions
var achievements = new GSet<string>();
achievements.Add("First Victory");
achievements.Add("Level 10");
achievements.Add("Perfect Score");
Console.WriteLine($"Count: {achievements.Count}"); // 3
Console.WriteLine($"Has 'Level 10': {achievements.Contains("Level 10")}"); // true
// Merge from another node
var otherAchievements = new GSet<string>();
otherAchievements.Add("Speed Run");
achievements.Merge(otherAchievements);
Console.WriteLine($"Merged count: {achievements.Count}"); // 4

ORSet (Observed-Remove Set / Add-Wins Set)

// Set supporting both add and remove
// Uses Hybrid Logical Clock for causality tracking
var clock = new HybridLogicalClock("node-1");
var friends = new OrSet<string>("node-1", clock);
friends.Add("Alice");
friends.Add("Bob");
friends.Add("Charlie");
Console.WriteLine($"Friends: {friends.Count}"); // 3
// Remove a friend
friends.Remove("Bob");
Console.WriteLine($"Friends: {friends.Count}"); // 2
// Merge from another node
var otherFriends = new OrSet<string>("node-2", new HybridLogicalClock("node-2"));
otherFriends.Add("Diana");
friends.Merge(otherFriends);
Console.WriteLine($"Merged friends: {friends.Count}"); // 3
// Tombstone garbage collection (remove old deletion markers)
var cutoff = clock.Now();
int removed = friends.CollectGarbage(cutoff);

TwoPhaseSet (2P-Set)

// Set where removal is permanent (element can never be re-added)
var permissions = new TwoPhaseSet<string>();
permissions.Add("read");
permissions.Add("write");
permissions.Add("execute");
// Revoke permission (permanent)
permissions.Remove("execute");
// Try to re-add (throws exception)
try
{
permissions.Add("execute");
}
catch (InvalidOperationException)
{
Console.WriteLine("Cannot re-add removed permission");
}
// Safe version
bool added = permissions.TryAdd("execute"); // Returns false

CRDT Characteristics

All Lattice CRDTs satisfy:

  1. Convergence: All replicas that receive the same updates will have identical state
  2. Commutativity: Updates can be applied in any order
  3. Idempotence: Applying the same update twice has no additional effect
  4. Associativity: Merge(A, Merge(B, C)) = Merge(Merge(A, B), C)

Serialization

// All CRDTs implement ISerializableCrdt
ISerializableCrdt crdt = counter;
byte[] serialized = crdt.ToBytes();
// Transmit over network, store to disk, etc.
// Deserialize
var restored = GCounter.FromBytes(serialized, "node-1");

Lattice.Replication: Multi-Node Sync

Status: In Progress

Enables synchronization across multiple Lattice instances.

// Create replication node
var node = new ReplicationNode(
nodeId: "node-1",
storage: storageEngine
);
// Connect to peer
node.ConnectToPeer("node-2", "tcp://192.168.1.100:5000");
// Sync protocol handles:
// - Delta transmission (only changes since last sync)
// - Conflict resolution (using CRDT semantics)
// - Vector clocks (for causality tracking)
// - Compression (LZ4 for efficient network usage)

Lattice.ORM: Object-Relational Mapping

Status: In Progress

Provides Active Record pattern for entities.

schemas/game/inventory.axion
// Define entity via Axion schema
entity InventoryItem {
@key id: uint;
name: string;
quantity: int32;
category: ItemCategory;
}
// Generated code implements ILatticeEntity<T>
// Use Active Record methods:
var item = new InventoryItem
{
Name = "Health Potion",
Quantity = 10,
Category = ItemCategory.Consumable
};
item.Save(); // Persists to storage
// Find by ID
var loaded = InventoryItem.Find(item.Id);
// Update
loaded.Quantity += 5;
loaded.Save();
// Delete
loaded.Delete();
// Query
var consumables = InventoryItem.Where(i => i.Category == ItemCategory.Consumable);

Advantages

1. Time-Travel Built-In

No need for custom temporal tables or application-level versioning:

// Traditional DB
var state = await db.ExecuteQuery(
"SELECT * FROM game_state WHERE tick <= @tick ORDER BY tick DESC LIMIT 1",
new { tick = 5000 }
);
// LatticeDB
var state = chronicle.TravelTo(5000);

2. CRDT for Distributed Consistency

Built-in conflict-free data types eliminate coordination overhead:

// Traditional DB: Manual conflict resolution
try
{
var current = await db.GetCounter("player:score");
await db.UpdateCounter("player:score", current + 10);
}
catch (ConcurrencyException)
{
// Retry or merge manually
}
// LatticeDB: Automatic convergence
counter.Increment(10);
counter.Merge(otherNodeCounter); // Always converges

3. Tick-Aware Queries

First-class support for simulation time:

# Query state at specific tick
query {
player(id: "123") @at(tick: 5000) {
position { x, y }
health
}
}
# Query changes over time range
query {
player(id: "123") @between(start: 1000, end: 2000) {
events {
tick
type
}
}
}

4. Schema-Driven Development

Axion schemas ensure code and storage are always in sync:

  • Compile-time type safety
  • No runtime schema mismatches
  • Automatic serialization code generation
  • Schema versioning and migration support

5. Deterministic Guarantees

All operations produce stable, reproducible results:

  • Key iteration is lexicographically ordered
  • CRDT merges are commutative and associative
  • Query results are deterministic across runs
  • No hidden state or ambient time

Disadvantages

1. Learning Curve

New query language and concepts:

  • Developers must learn LatticeQL syntax
  • CRDT semantics differ from traditional locks
  • Tick-based time model requires mindset shift
  • Chronicle timeline management adds complexity

2. More Complex Than Key-Value

Not as simple as Redis or basic key-value stores:

  • Chronicle adds versioning overhead
  • CRDT metadata increases storage size
  • Transaction isolation levels to understand
  • Multiple storage engines to choose from

3. Storage Overhead for History

Time-travel requires keeping historical state:

  • Snapshots consume disk space
  • Delta compression helps but adds CPU cost
  • Retention policies need careful tuning
  • Garbage collection necessary for long-running systems

4. In-Progress Features

Some components are not yet complete:

  • Lattice.QL query executor (parser done, executor in progress)
  • Lattice.Search full-text indexing (planned)
  • Lattice.Optimization query planner (in progress)
  • Network replication protocol (in progress)

5. Specialized Use Case

Not a general-purpose database:

  • Optimized for simulation/gaming workloads
  • May be overkill for simple CRUD applications
  • Tick-based model not suitable for all domains
  • Chronicle overhead unnecessary if time-travel not needed

Comparison with Other Databases

vs PostgreSQL with Temporal Extensions

FeaturePostgreSQL + ExtensionLatticeDB
Time-travelAdd-on (pg_temporal)Built-in (Chronicle)
CRDT supportManual implementationNative (Lattice.CRDT)
DeterminismQuery order may varyGuaranteed deterministic
Tick awarenessApplication layerFirst-class concept
Schema syncManual migrationsAxion code generation
BranchingNot supportedNative timeline branching

Winner: LatticeDB for simulation workloads requiring determinism and time-travel

vs MongoDB

FeatureMongoDBLatticeDB
SchemaFlexible (pro/con)Enforced via Axion
VersioningApplication-levelBuilt-in Chronicle
DeterminismDocument order variesGuaranteed stable
CRDTNot supportedNative types
Query languageMQL (JavaScript-like)LatticeQL (GraphQL-like)
ReplicationBuilt-in (replica sets)In progress

Winner: MongoDB for general web apps, LatticeDB for deterministic simulations

vs FoundationDB

FeatureFoundationDBLatticeDB
TransactionsACID, serializableACID with tick metadata
AbstractionsLow-level key-valueHigher-level (ORM, QL)
Time-travelNot built-inNative Chronicle
CRDTNot supportedNative types
DeterminismGuaranteedGuaranteed
ComplexityHigh (bare metal)Medium (more abstractions)

Winner: FoundationDB for maximum control, LatticeDB for faster development

vs Redis

FeatureRedisLatticeDB
PersistenceOptional (RDB/AOF)Primary focus
Data typesString, Hash, Set, etc.Axion-defined structs + CRDTs
Time-travelNot supportedNative Chronicle
DeterminismNot guaranteedGuaranteed
Query languageCommandsLatticeQL (planned)
Use caseCache/pub-subPersistent simulation state

Winner: Redis for caching, LatticeDB for persistent deterministic state


Performance Targets

These are design goals; actual performance depends on workload:

Write Latency

OperationTargetNotes
Single Put<1msLocal storage, no sync
Transactional Put<5msWith durability guarantees
Snapshot Creation<10msFor typical game state (1-10 MB)
CRDT Merge<1msPer operation, amortized

Read Latency

OperationTargetNotes
Single Get<0.1msCached in memory
Range Scan (1000 items)<5msSequential read
Time-Travel Query<10msRecent history (last 1000 ticks)
Snapshot Restore<50msDecompression + load

Throughput

WorkloadTargetNotes
Writes/sec100K+Batch operations, memory engine
Reads/sec500K+Hot data cached
Snapshots/sec100Concurrent snapshot creation

Storage

MetricTargetNotes
Compression ratio2-4xLZ4 compression on snapshots
Overhead10-20%Version metadata, indexes
Compaction<1%Amortized write amplification

Usage Recommendations

When to Use LatticeDB

Use LatticeDB if you need:

  • Deterministic simulation state
  • Time-travel debugging (“go back to tick 5000”)
  • Timeline branching (“what if” scenarios)
  • Distributed state with CRDTs
  • Tick-based time model
  • Schema-enforced types

When NOT to Use LatticeDB

Don’t use LatticeDB if you need:

  • Simple key-value caching (use Redis)
  • General CRUD web app (use PostgreSQL/MongoDB)
  • Maximum raw throughput (use FoundationDB)
  • No schema enforcement (use MongoDB)
  • Real-time analytics (use ClickHouse)
  • Graph queries (use Neo4j)

Migration Path

If you’re considering migrating to LatticeDB:

  1. Prototype Phase: Use Lattice.DB with in-memory storage
  2. Schema Design: Define Axion schemas for your entities
  3. Incremental Adoption: Start with Chronicle for snapshots only
  4. Add CRDTs: Replace coordination with conflict-free types where applicable
  5. Full Integration: Switch to LatticeQL for querying

Example: Complete Integration

using Lattice.DB;
using Lattice.Chronicle;
using Lattice.CRDT;
// Setup storage
var storage = new FileStorageEngine();
storage.Open("game.ldb");
// Setup Chronicle
var chronicle = new ChronicleEngine(storage);
chronicle.EnsureMainTimeline();
// Game state (serialized to bytes)
var gameState = new GameState
{
Players = new Dictionary<uint, Player>(),
CurrentTick = 0
};
// Game loop
for (ulong tick = 0; tick < 10000; tick++)
{
// Update simulation
UpdateSimulation(gameState, tick);
// Snapshot every 100 ticks
if (tick % 100 == 0)
{
var stateBytes = SerializeState(gameState);
var stateHash = ComputeHash(stateBytes);
chronicle.CreateSnapshot(
tick: tick,
stateData: stateBytes,
stateHash: stateHash
);
}
}
// Time-travel debugging
var buggyTick = 5234;
var travel = chronicle.TravelTo(buggyTick);
if (travel.Success)
{
Console.WriteLine($"Traveled to tick {travel.Snapshot.Tick}");
Console.WriteLine($"Need to replay {travel.TicksReplayed} ticks");
// Restore and investigate
var restoredState = DeserializeState(travel.StateData);
DebugGameState(restoredState);
}
// Create alternate timeline
var branchPoint = chronicle.FindLatestSnapshotBefore(1, tick: 3000);
if (branchPoint != null)
{
var branch = chronicle.Branch(branchPoint.Id, new BranchOptions
{
Name = "Alternate ending",
SwitchToNewTimeline = true
});
// Continue simulation in alternate timeline
// Original timeline unchanged
}
// Cleanup
chronicle.Flush();
storage.Close();

Future Roadmap

Short-Term (Q1 2026)

  • ✅ Complete Lattice.QL query executor
  • ✅ Finish Lattice.ORM Active Record implementation
  • ✅ Stabilize replication protocol

Medium-Term (Q2 2026)

  • 📋 Add Lattice.Search full-text indexing
  • 📋 Implement query optimizer
  • 📋 Add PostgreSQL compatibility layer

Long-Term (2026+)

  • 📋 Distributed query execution
  • 📋 Sharding support for horizontal scaling
  • 📋 SQL compatibility layer


Document Version: 1.0.0 Status: Complete Next Review: 2026-02-01